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On the Gas-Liquid Phase Transition
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A new approach to the problem of the gas-liquid phase transition, based on
the Mayer cluster expansion of the pattiticn function, is proposed. It is
shown that the necessary and sullicient condition for phase transition to
occur is that there exist a temperature T . T, - Osuch that for T <2 7., all
the b, (except perhaps a finite number of them) are positive, wherc the &,
are the cluster integrals (as defined by Mayer) in the thermodynamic
limit. Explicit expressions for the isotherms for gas-saturated vapor
and liquid phases are given.
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1. INTRODUCTION

Let us consider a system of N particles enclosed in a volume V at temperature
T and interacting through a potential &(r; . ry....,ry) = Y, ., d(r). It is
an old problem'V to derive the correct isotherms starting from the partition
function Z(N, V, T), where

Z(N, V, T) = (10N | | dr, - dryexp [—-B 5 ¢(r,,-)] (1

vev i)

with 8 = 1/kT, k being the Boltzmann constant. A2 == #*2amkT, m is the
mass of a particle, and # is Planck’s constant. The necessity for introducing
N'and A in (1) has been discussed by Uhlenbeck.!”! We shall not discuss
these points here and refer the reader to Ref. 1, the notations of which we
shall mostly use. Only the new notations introduced in this article will be
explained.
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Starting from (1), we know that the grand partition function
Za(V, T, z) = Y Z(V, T, N)N)V, ZV, T, 0) = | (2)
Neti

(we shall for simplicity put A -~ 1} and the function

XV, T,z) - % bV, T)z!
11
satisfy the relation
ZalV, T,z) e 3)

Expressions for b; are given in Ref. | and have been discussed in detail in
many books.? The important thing is that limy_. b(V, T) = b(T) exists.
Writing

X(z, T) = lim X(V, 1, 2) = Y B(T)z! (4)
Y. i1

one can show'? that if the series (4) is convergent, then the pressure p and
the specific volumes v arc given by

pIkT = Xz, T) -

[
St

A7)z

» (3)
Ve zeXpoz = Y Ih(T)z!
i1

Relations (5) are the parametric equations derived by Mayer giving the
isotherms for the gas state. The paramecter = 15 a positive-definite physical
quantity known as the fugacity and is given by

z = (1N3) /AT o on 6T (6)

where p is the chemical potential.

It is well known that the Maver theory. though constituting the first
major advance in the theory of isotherms since the van der Waals equation,
could not give a satisfactory description ot the critical phenomena. Equations
(5) are exact for the low-density region. They are by no means valid for higher
densities, where the virial expansion (i.e., the expansion of pressure p as a
function of p = 1/v) breaks down. It is casy to see that the expressions (5)
arc truc for small z (e.g., the zeroth-order approximation gives the perfect
gas law and the first-order expression gives the Onnes virial expansion, as is
experimentally verified). It is obvious that (5) is valid so long as the series

2 See Ref. 2 for an excelient review of the Mayer theory and subsequent work.
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S, bzt is convergent. In other words, if z 2, is the radius of convergence
of the series Zf_l b,z!, then (5) is valid up to = z,. This clearly indicates
that Mayer theory gives the possibility of a phase transition at z = z,.
Mayer himself took the idea and tried to give a theory of the phase transition
which has met ample criticism. We shall not discuss the Mayer theory of
condensation now. In the next section, we shall discuss the theory we propose
without any reference to any other existing theorics of condensation. In the
following section, we shail discuss some aspects of the theory of the phase
transition proposed by Mayer® in the context of our theory.

2. PHASE TRANSITION
We have the partition function Z(N, V., T') given by

Z(N, V, T) = (1/27ri)§ VAV =-N-1 g 7
c

where X(, V, T) = ZL bV, T) " 1s the generating function for Z(N, V, T),
and C is any closed contour around { -- 0(in the complex {-plane) such that
S o1 bl is convergent on C.

Theorem 1. The necessary and sufficient condition for phase
transition to occur is that there cxist a temperature 7 = 7, ~ 0 at and
below which all &, (excepting perhaps a finite number of them) arc positive,

Proof. (i) The condition is necessary. Let us first note that if the series
S bt is analytic for all positive values of { at all temperatures, there
does not exist a discontinuity in the isotherms obtained from (5) and hence
phase transition does not occur. Thus for phase transition to occur it 1s
necessary'® that X({, T) have a singularity on the positive real axis in the
complex {-plane. As temperature goes to infinity, it is known'® that the
b, alternate in sign as the system behaves as hard spheres. From the theory
of complex variables,® it is wellknown that the necessary and sufficient
condition for a series of the form X({, T) - Z;’Z_l b,{! to have a singularity
on the positive real axis is that alf the b, {(excepting perhaps a finite number
of them) be positive.

(i) The condition is sufficient. Let », = 1 be the particle hard-core
volume. This puts a restriction on the maximum number of particles that
can be put in a volume V. Mathematically. this fact is equivalent to adding
potential U(r, , ry,..., ty) = >, Ulr,)) to H(r, ... r) in (1). where

Ulr,) = 0 if the Ath partcle isin V

(8)
= 00 if the &tk particle is outside ¥
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Let N be the maximum number of particles that can be accommodated in V;
then, due to (8), we have

Z(N,V,T)=0 for N >N ©9)

and limy,(N/V) = 1. Along with this, we note that the thermodynamic
limit s given by

Li_n{l (N/V) = 1/v = l/specific volume =: density

Assuming stable interactions, the pressure p and specific volume v are
given by (see Ref. 7, p. 57)

plkT = X(z, T) 1/t —= z[éx(z, T)éz] (10)

where X(z, T) = lim_ . (1/v) log Zg(V, T, z) and where V' — .00 in the
sense of Fisher, which is a smoothness condition on sequences imagined in
passing to the limit of infinite volume. Now, for an interaction with hard,
repulsive cores,

N
X(z, T) = lyml (1/V)log Y Z(N,V,T)zN 1
NG
We shall take (10) as the defining equations for the pressure p and the
specific volume v. Starting from Eq. (7) and using the definition (190), we
shall evaluate in this section the function Y(Z, T) for the intervals 0 <z < 1
and 1 <z < oo and then, using (11}, show that at Z = 1 (T < T,), the
isotherms exhibit a first-order phase transition. The value of Z = 1 is to be
approached after the thermodynamic limit has been taken. Z == z/z,, and
z, 1s defined below.
We have

ZIN,V,T) = (I/27ri)§; eVX(e.y—N-1 4r (12)
.
where
X, T)y:= Y b(v, N (13)
11

fwe shall not distinguish betwcen Y(V, T, z) and lim,,, X(V, T, z) -
X(z, T) when the limit exists], and C i1s a contour as already specified.

Let z = z, be the radius of convergence of the series (13). We shall
write (13) as

XET) =3 gl (14)
I:21
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where
g =bz' and - g, (15)

It is clear that (14) is convergent for { -~ 1.
We can write (12) as

Z(N, ¥, T) = (z,"2mi)§_{explVXiZ, D} T3 (16)

where C is a contour around { == 0 (in the complex {-plane) such that
|{| < 1onC.
To find the function X(z, T') for the whole range of Z =- z/z,, we shall
start from (16) and (10).
From (16), we have
N 1 _ [ (;_-;/Z)M-l dZ
v — y TYeN oo e Ty LTS T ds
Zgl‘(Va T’ Z) - éo Z(Ny V, r)" 27_” §(ﬁ [exp VX(ga 1)] l - (E/Z) z
a7
Case 1. z/z, =Z < 1. In (17), let us cheose C to be a circle of radius
Z, so that we can put

From (17), we have

ZaV, T,Z) = -l— f" L= eXP_[__’_(L;';Q(’] exp [V Z g,z cxp(’z’/ﬁ)} do
=1

2w, 1 —exp( -if)
(18)
To find X(z, T) from (18), let us first note that
1 —exp[—iN + 1)§] . iNG | sin[(N -+ 1)8/2]
l = ] —_— ] — = (S
ﬁlgl 1 — exp(—if) A (e P ) sin(6/2) ©)
where 6(8) is the Dirac delta function.
From (18), one easily derives
Xz, T) = ) g2 (19)
(=1
which gives, for Z < 1,
pIkT = Y g2, lir = 3 Ig3! (20)
t:1 [

This case is dealt with only to show that we get the already known result
consistent with (5).
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Case 2. z/zy =Z > . Let us choose the contour C in (17) to be a
circle of radius 1/Z and put in (17) { == (1/Z) €', ~7 <L 0 =, 7. We have

_ 1 7 1 - (F2 )Rl [ % [yl - }
Zg(V, T,2) = — ——g—m—exp|V — e df (21
r( ) . f__,, | 5t i p Lglgz(z) (21)

Since the &, are positive for all / (the case when a finite number of b, are
not positive definite can be obtained by a straightforward generalization),
We can prove from (21) (see Appendix A for the proof) using

lim (1/V)log N = lim (1/V)log V' = 0, lim [(sin N§)/0] = §(8)
V-0 V- No»
(22)
that

XE, T)=2logz Y g(ljz) (23)
L=}
which gives for Z > |
plkT == 2logz + Z gD Hje e 2 =3 g (1fz) (24)
leal (=1

From (20) and (24), we see that for stable interactions with hard cores,
the pressure p is a continuous function of Z [as previously established by
Ruelle for the case considered here (Ref. 7, p. 58)]. but 1 /¢ has a discontinuity
at z == 1, The isotherms for temperature 7 -~ T, will be given by (with

& = bizg)
plkT = Z gz He - y Ig 7! for z <1
= 11
(25)
3 @ o -1 N . ) 19 '] -1 B
pIkT =3 g1, [Z lg,] T l2 -y Ig,J for z =1
=1 i=1 - (=1

(26)

pikT = 2logZ + ¥ gi(1/2)% e =2 =% Ilg(l:2) for z>1

1-=1 i-1

(27)

(26) is a consequence of (i) Van Hove's theorem,'® which states that pressure
p obtained from (1) is a monotonic function of ¢ and (i) the fact that at
v = vV and v'® (see Fig. 1), the pressurc p is the same. A typical isotherm
from (25)-(27) is shown in Fig. 1. The curve to the right of B corresponds
to the fugacity Z < 1, the flat portion A8 corresponds to Z == |, and the



On the Gas-Liquid Phase Transition 137
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Fig. 1. Pressure as a function of specific volume at constant temperature 7 < 7. .

curve to the left of A corresponds to Z > 1. The vapor and the liquid specific
volumes are given by

© -1 r . -1
o = [z 1g¢} and 0¥ =~ |2 -2 /gz] (28)
=1 - b1

The critical temperature 7T, is given by

V(T = v (1)

or
S lgdT) =2 Y gl
I=1 (23]
ie.,
> lgdTe) -1 (29)
I=1

The interval A8 in Fig. 1 for a temperature 7 - 7. is given by

i | _ 21 — Yialg)

(30)

p@ @
[ 14

Z?:l Igz- B -2—_—2—1;1 /g ) -(S:-{E\:l /gl)(2 zz!=1 [gz) ’
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Thus we have a first-order phase transition. For temperature T 2> T, ,
infinitcly many &, (presumably) alternate in sign and hence the serics
371 b,L ceases to have a singularity on the positive real axis in the complex
{-plane. In that case, the isotherms for the whole range of z are given by
relations (5).

3. DISCUSSION

The above considerations are modei-independent and are valid for any
potential 3,5, &(r,;;) which is stable™ and has hard cores. Ruelle (Ref. 7,
Section 4.3.1) has shown that (i} if there exists-a B = 0 such that

Y b(ry) = —nR forall nz0 3N

i

(stability condition) the series X(z, T') = Zf_, b(I)z! is convergent at least
up to
z < e B OB (32)

where

CB) = | dictete 1| (33)

This means that the grand partition function does not have a zero
on the positive real axis in the region (32). By Lee and Yang's'" theorem
(which gives the necessary condition for phase transition to occur), there is
no phase transition in (32). The region (32) defines the gas region.'” This
also means that there is no phase transition at high temperature, since for
small 8, the region (32) extends to the whole of the positive z axis (see Ref. 7,
Section 5.2 for proof).

Both the Mayer and Lee-Yang theories give a satisfactory necessary
condition for phase transition to occur. Lee and Yang's theory is more of
an abstract mathematical formulation for a neccessary condition for phase
transition.' Any theory based on Mayer’s cluster expansion is the most
promising one. But such a theory must give the details of the isotherm for
the whole range of density, i.e., from the gas to the liquid state. Mayer’s
attempt to prescribe how the isotherm would look at the liquid state was
unsuccessful. We shall not go into the details of the Mayers’s theory of
condensation, for which we refer to their book.*® We stress that the purpose
of this article, it 1s to show the potentiahity of the Mayer cluster expansion to
give a complete theory of phase transition. The above discussion is by no
means complete. One should in fact discuss some specific potentials and
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examine whether the above conditions are really satisfied.® Our aim here,
however, is to encourage a new line of approach on the basis of the most
rigorous existing equilibrium theory of a many-particle system.

APPENDIX A
Referring to Eq. (21), let

_ 1 fT ] — (32eif N+1 0 [y
1) - o | AT ey S (5) e
R A | “

-

[ — (5~e:8):\?+1 ro> 148 . J
— exp!V =] e | df A.l
R f_,, 2210 P ) ;‘ﬂgl (z) (A1)

Therefore
I(N) = J db 31 — (22;’:25” exp [ v g 2 (—;—)l e‘”’]
e a2 |
= ﬁ Ji,, d8 1:_(_22%;—_2“ exp {Végl (%)l {cos /0 } isin 18)]
- L%% exp[V Y o ( ) (cos 10 — isin 16)]% (A.2)
= -~—fd9( exp[V glg,( ) cos IBA g cos |V glg, ( l ) sin 19]
x Rl EE )

. o i
-+ fd[}( exp{V z; & (-—2—) cos !{)
1 — (fze—i())ﬁﬂ)

) sin {‘V }: £ (%)l sin 19]

-1

x Im

R =T (A3

3 Note that the following assumption has been madec throughout in the above discussion:
Let zo( V, T') be the radius of convergence of the series 377, bV, T)zt and z(T') the radius
of convergence for X%, b5(T)z%; then limy_.o 2V, T) = z.(T). A comment should also
be made about the existence of the limit limy .. b+, T) b T). In fact, Ruelle's
“tempcredness” condition (Ref. 7, Section 3.1.1, p. 32) assures the existence of this limit.
As remarked by Ruelle himself, “temperednoess™ is not the best possible condition for
the proof of the existence of the thermodynamic limit. This is, however, satisfied by
most of the realistic interactions.
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Now, we have

exp[V Y. g/(1/2)! cos 10] < exp [V Y gl(l/")} (A.4)
=1 =1
(thus g, > 0 for all /) and
1 — (-Z-ze-ie)ﬁ‘;-l . I — (52)N.-1
Re T T s (A.5)
1 — (Zze—z'O)NH . | -- (fz)ﬁu
Im 1 52010 = ) (A6)
Therefore
— 1--(z‘)‘*1 [ : ] ‘]
I(N) < 27— explV Y gil=
(N) 11—z ] z; '(z)
_ (172351 = 1y
= 2m52R “‘_—(l,z'&“e p[ Y 2 (?)] (A7)
1=:1 R
Again

I(N) = E”’%U df %eXp[V Z g (i) cos 19]3

=1 s

X cos[V Y g ( ] ) sin /0] Re [ l——(em/zz)hll exp(— INB)]

& ew/ 2)
-+ J do %exp[V lil g (—;—)[ cos /0}( sin [V glg, (%)L sin 10]

— (pi8]723) NV 11 )
X Im [—l—r:(—e(—e/ij/.—;-z)' exp(—iNﬁ)]) (A.8)

It is clear that for large N, the contribution to the integral on the left-hand
side of (A.8) comes from small values of 6 around 0 == 0. Since
(sin NO)/NG < 1, we have

28 5 (j do sm9N9 exp[V Z & ( 5—) Cos 10](

X cos[ i (—;—) sin IGJ Re l ! ]_' (eT/z2)™ exp( ——1’[\76)]

((”/-“)

NI

—

+ jﬂ d6 ——9—9 3exp [V 42,:1 o (;), cos l()]g sin [V Z £ (?) sin 10]

x Tm [1 ("(‘:{522)“ exp(—iN())D
< I(N) | (A.9)




On the Gas-Liquid Phase Transition 141
Thus we have from (A.7) and (A.8)
2logz — lim -l-—lo N 4 lim ~—l—lo 27

B2 AL N8 R N BT

sin N@

1 " ] Loy '
- !v”}; 5 log (f_" dQ g EXp [V !2;:] & (?) cos 10}

1 — (ew/zz\ﬁn 1

X Re {_—l__n(e“’/ﬁ) exp(—zNG)] cosl o L I (5—) sin /0]

X

- f; df sinef\l—ﬂ %exp [V i & (%) cos 10]; sin [V zz & (L), sin 10]

11 =1 1<

< Im [% xp(-—il_\l"(})]‘)

2

© y
< lim — log I(N) <2logz + Y g (') (A.10)
N« 11 Z

For the integrals on the left-hand side of (A.9), we shall suppose that the
limit N -» o0 can be taken inside the integral sigh and we shall further use
that limg_.[(sin N8)/8] = 8(6), so that the intcgrais are to be evaluated at
6 = 0. Rigorously speaking, this means that for large N, the contribution to
the integral comes from the neighborhood of ¢ -- 0. The range of the
neighborhood becomes arbitrarily small as N increases indefinitely. This
gives immediately

Xz T)= LT}: (1/V)log (N) = 2log z + i g(1/z) (z>1)
- (A.11)
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